Shown here is an artist's impression of a star system, where helium flows from one star, a helium white dwarf (upper right), onto another, piling up around a small, dense primary star. Helium from the disk eventually falls onto the star, forming a shell that may end up exploding as a supernova.
Click on image for full size
Credit: Tony Piro (2005)

Unusual Explosion Sparks New Insight Into the Life of Stars
News story originally written on November 5, 2009

Scientists in California have discovered a new way that stars explode, in research funded by the National Science Foundation (NSF).

The discovery hinges on an unusual explosion in the galaxy NGC 1821, roughly 160 million light years away, according to astronomer Dovi Poznanski of the Lawrence Berkeley National Laboratory. Poznanski and colleagues report their discovery in a paper published today in the journal Science Express.

"Stellar explosions are some of the key processes in the evolution of the Universe," said Thomas Statler, an NSF program director in its division of astronomical sciences, "They influence the formation of stars and the growth of galaxies, and they produce nearly all of the metallic elements that form the cores of planets like Earth."

Light from the exploding star reached Earth in 2002 and was recorded by a robotic telescope at Lick Observatory, near San Jose, California. At first, the flash was mistakenly classified as an ordinary "Type II" supernova, a catastrophic event in which a massive star destroys itself.

A single supernova releases a hundred times more energy in its first second than the Sun will produce in its entire lifetime. The Sun is too small to explode this way, but Earth still owes its existence to supernovae. Heavy elements, like iron, gold, and uranium, are made through no other means than a supernova.

When Poznanski and his colleagues re-examined the 2002 data this year, they realized they had something new on their hands. The spectrum---the inventory of the explosion's light across different colors---didn't match typical supernovae. It indicated an abundance of helium, and a hint of the metal vanadium.

Poznanski and University of California (UC) Berkeley graduate student Mohan Ganeshalingam analyzed how the object, designated SN 2002bj, had brightened and faded over time. "It was three to four times faster than a standard supernova," said Poznanski, "basically disappearing within 20 days. Its brightness just dropped like a rock."

Christopher Stubbs, chair of the Department of Physics at Harvard University, jokingly dubbed it a ".Ia" (point one A) supernova, because it is one-tenth as bright for one-tenth the time as a Type Ia supernova, and the name stuck.

The researchers realized that these properties matched the description of a new type of explosion proposed in 2007 by a group led by Lars Bildsten of the Kavli Institute for Theoretical Physics at UC Santa Barbara. Bildsten's theoretical work, also supported by NSF, examined what happens when two ultra-dense white dwarf stars are in orbit around each other.

White dwarfs are the ultimate end of stars like the Sun, in which the mass of an entire star is packed into a volume roughly the size of Earth. If two white dwarfs are orbiting closely enough, matter can flow from one to the other, building up a thick layer of helium on the second star. In the right circumstances, the helium layer can explode in a thermonuclear blast.

Bildsten and his colleagues calculated that the explosion would look, at first glance, like a regular supernova, but it would appear faster and only about one tenth as luminous. The explosion would eject huge amounts of helium and vanadium into space.

"We think this may well be a new physical explosion mechanism, not just a minor variation of ones already known," said Alex Filippenko, UC Berkeley professor of astronomy and co-author on the discovery paper. "It whets my appetite for what else we might find."

Text above is courtesy of the National Science Foundation

Last modified February 5, 2010 by Lisa Gardiner.

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Galaxies

The introduction of telescopes to the study of astronomy opened up the universe, but it took some time for astronomers to realize how vast the universe could be. Telescopes revealed that our night sky...more

White Dwarfs

White Dwarfs are the remnants of stars that were massive enough to stay alive using nuclear fusion in their cores, but not massive enough to blow apart in a Type II supernova. When stars like our own sun...more

What is mass?

Would it be more difficult to pull an elephant or a mouse? If you pulled each animal with the same amount of force, the elephant would respond less to pulling, even if he didn’t pull back at all. That’s...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Oldest Earth Mantle Reservoir Discovered

Researchers have found a primitive Earth mantle reservoir on Baffin Island in the Canadian Arctic. Geologist Matthew Jackson and his colleagues from a multi-institution collaboration report the finding--the...more

It’s Not Your Fault – A Typical Fault, Geologically Speaking, That Is

Some geologic faults that appear strong and stable, slip and slide like weak faults. Now an international team of researchers has laboratory evidence showing why some faults that 'should not' slip are...more

Extended Period of Lower Solar Activity Linked to Changes in Sun's Conveyor Belt

A new analysis of the unusually long solar cycle that ended in 2008 suggests that one reason for the long cycle could be a stretching of the sun's conveyor belt, a current of plasma that circulates between...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA