An artist's picture of the solar interior. Energy is generated in the solar core
NASA

The Solar Core

The solar core is made up of an extremely hot and dense gas (in the plasma state). Despite a density of 160,000 Kg/m3, the temperature of 15 million kelvins (27 million degrees Faranheit) prevents the core from reaching the solid state.

The core is the region where the energy of the Sun is produced. The density and temperature are such that nuclear fusion reactions can take place: these reactions release energy both in the form of electromagnetic energy (gamma rays) and particles (in particular neutrinos). Despite the reactions, the Sun's core is a very dark place!

Last modified May 10, 2010 by Randy Russell.

You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

The Plasma State

Plasma is known as the fourth state of matter (the first three states being solid, liquid and gas).Matter in ordinary conditions on Earth has electrons that orbit around the atomic nucleus. The electrons...more

Kelvin Temperature Scale

The Kelvin scale is a temperature scale that is often used in astronomy and space science. You are probably more familiar with the Celsius (or Centigrade) scale, which is part of the metric system of measures,...more

Neutrinos

The neutrino is an extremely light (and possibly massless) neutral particle. The neutrino belongs to the family of leptons, the particles that interact through the so-called weak force. For this reason...more

The Photosphere - the "Surface" of the Sun

Most of the energy we receive from the Sun is the visible (white) light emitted from the photosphere. The photosphere is one of the coolest regions of the Sun (6000 K), so only a small fraction (0.1%)...more

The Solar Core

The solar core is made up of an extremely hot and dense gas (in the plasma state). Despite a density of 160,000 Kg/m3, the temperature of 15 million kelvins (27 million degrees Faranheit) prevents the...more

Creating Elements up to Iron

When the temperature in the core of a star reaches 100 million degrees Kelvin fusion of Helium into Carbon occurs (three Helium nuclei combine to form a nucleus of Carbon). In the same range of temperature...more

Binding Energy

A plot of the binding energy per nucleon vs. atomic mass shows a peak atomic number 56 (Iron). Elements with atomic mass less then 56 release energy if formed as a result of a fusion reaction. Above this...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA