The first step of the Hydrogen fusion process: a
nucleus
of Deuterium (2H) is formed from two protons
with the emission of an antielectron and a neutrino.
University of Oregon
The Hydrogen Fusion Process
In the basic Hydrogen fusion cycle, four Hydrogen nuclei (protons) come together to make a Helium nucleus. This is the simple version of the story. There are actually electrons, neutrinos and photons involved that make the fusion of Hydrogen into Helium possible.
The important thing to remember is that this fusion cycle releases energy in the core of the star. It is this fusion cycle that generates energy in our Sun. We know of this energy when we feel hot on Summer days!
This whole process happens in three steps. There are animations of the three steps below to help you visualize this process!
Movies courtesy of University of Oregon
You might also be interested in:
Fusion in the core of stars is reached when the density and temperature are high enough. There are different fusion cycles that occur in different phases of the life of a star. These different cycles make
...moreIn the basic Hydrogen fusion cycle, four Hydrogen nuclei (protons) come together to make a Helium nucleus. This is the simple version of the story. There are actually electrons, neutrinos and photons involved
...moreNeutron capture can occur when a neutron approaches a nucleus close enough for nuclear forces to be effective. The neutron is captured and forms a heavier isotope of the capturing element. When the new
...moreA Supernova is a very massive star that explodes at the end of its life cycle. The supernova is the furnace where the heavy elements (heavier than iron) are formed.
...moreIMF stands for Interplanetary Magnetic Field. It is another name for the Sun's magnetic field. The Sun's magnetic field is huge! It goes beyond any of the planets. The Sun's magnetic field got its name
...moreNuclear fusion is a process where two or more nuclei combine to form an element with a higher atomic number (more protons in the nucleus). Fusion is the reverse process of nuclear fission. Fusion reactions
...more The theory of relativity states that no particle can travel at the speed of light in a vacuum. However, light travels at lower speeds in dense media, like water. A particle traveling in water must have
...moreNeutrino interactions with matter are extremely rare, so detecting a neutrino is very hard. Neutrino detectors are typically large, underground tanks filled with a fluid that reacts to the passage of neutrinos.
...more